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WHAT IS AN INVERSE 

PROBLEM?
“A problem with the goal of reconstructing 
information through indirect measurements”
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“A problem with the goal of reconstructing 
information through indirect measurements”
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Example:
• Goal: find the growth of a population

• Data: Population statistics

• Model: Exponential

𝑀 𝑎, 𝑏 = {𝑡 ⟼ 𝑎 ∙ exp 𝑏𝑡 }



ELEMENTS OF AN INVERSE 

PROBLEM
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MEASUREMENT OPERATOR

• A linear operator

𝔐: 𝔓 → 𝔇

• 𝔓: Parameter space

• 𝔇: Data space

NOISE MODEL

• A noise map
𝑛: 𝔓 × 𝔇 → 𝔇

Accounting for

• Detector noise

• Modelling error

PRIOR MODEL

• Purpose: To reduce 
noise

• Restricts the 
parameter space 𝔓 
based on prior 
information.



IMAGING PROBLEM:
6
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Fig. Sinogram of an unknown 
shape from x-ray data.

Fig. X-rays passing through an object and being 
picked up by a detector on the other side.



IMAGING PROBLEM:
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Fig. Sinogram of a square 
shape from x-ray data.

Fig. X-rays passing through a uniform square 
and being picked up by a detector on the other 
side.



RADON TRANSFORM

• The Radon Transform is a 
linear operator

𝑅: 𝐿2 ℝ𝑛 ⟶ 𝐿2 𝑆𝑛−1 × ℝ

     defined by

𝑅𝑓 𝜃, 𝑠 = න

𝜃,𝑥 =𝑠

 

𝑓 𝑥 𝑑𝑥
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Fig. Model for Radon transform 
of a two-dimensional function f
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Vid. Samuli Siltanen Filtered Back Projection image 
reconstruction: https://www.youtube.com/@ssiltane/videos 
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https://www.youtube.com/@ssiltane/videos


RESTRICTED DATA 

TRANSFORM

Data: 
• Ω: A bounded convex domain

• 𝑅𝜒Ω(𝜃, 1): Tangent distance 
between boundary points

Goal:
• Arclength of 𝜕Ω

• A parameterization 𝛾: 𝑆1 ⟶ 𝜕Ω 
in terms of the angle of 
tangency
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Fig. Model of a convex domain with 
interior circle and tangent data



RESTRICTED DATA 

TRANSFORM
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Fig. Sinogram of an unknown shape 
relative to an origin in its interior

Fig. Sinogram slice at 
perpendicular distance 1.



RESTRICTED DATA 

TRANSFORM
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Fig. Sinogram of an ellipse 
relative to an origin in its interior

Gif. Ellipse reconstruction from 
to an interior circle



MICROLOCAL 

METHODS

Probing Singularities



DISTRIBUTIONS

• A domain Ω is determined 
by its boundary 𝜕Ω

• As an 𝐿2(ℝ2) function 𝜒𝜕Ω is 
undetectable

• However, 𝜒𝜕Ω can act on an 
𝐿2(ℝ2) function 𝑓 through 
integration:

𝜒𝜕Ω, 𝑓 = න
𝜕Ω

 

𝑓𝑑𝑥

Motivation:
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• A domain Ω is determined 
by its boundary 𝜕Ω

• As an 𝐿2(ℝ2) function 𝜒𝜕Ω is 
undetectable

• However, 𝜒𝜕Ω can act on an 
𝐿2(ℝ2) function 𝑓 through 
integration:

𝜒𝜕Ω, 𝑓 = න
𝜕Ω

 

𝑓𝑑𝑥

Motivation:

A distribution 𝜒 on ℝ𝑛 is a continuous linear map 
from 𝐶𝑐

∞(ℝ𝑛) to ℝ.
• The space of distributions is denoted by 𝒟′(ℝ𝑛)

• 𝐿2(ℝ𝑛) embeds into 𝒟′(ℝ𝑛) as 𝑓 ↦ 𝑇𝑓 with

𝑇𝑓 𝜑 = න 𝑓𝜑𝑑𝑥 , ∀𝜑 ∈ 𝐶𝑐
∞(ℝ𝑛)

Definition:
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DISTRIBUTIONS

• If 𝜒 ∈ 𝒟′(ℝ𝑛) and 𝛼 = (𝑎1, … , 𝑎𝑛) is a multi-
index, 𝜕𝛼𝜒 is defined by 

𝜕𝛼𝜒, 𝜑 = −1 𝛼 𝜒, 𝜕𝛼𝜑

• The Radon and Fourier transforms are defined 
for distributions 𝜒 via the formula

𝑅𝜒, 𝜑 = 𝜒, 𝑅∗𝜑  𝑎𝑛𝑑 Ƹ𝜒, 𝜑 = 𝜒, ො𝜑

• If Φ: X → Y is a diffeomorphism of open sets, 
and 𝜒 is a distribution on Y, then

Φ∗𝜒, 𝜑 = ⟨𝜒, 𝜑 ∘ Φ| det( 𝐷Φ)|⟩

Properties:

• All 𝐿2(ℝ𝑛) functions are 
distributions

• If Y is a submanifold of ℝ𝑛, its 
characteristic function 𝜒𝑌 can be 
realized as a non-zero distribution

• The dirac delta “function” 𝛿0 can 
be realized as the distribution

𝛿0, 𝜑 = 𝜑 0 , ∀𝜑 ∈ 𝐶𝑐
∞(ℝ𝑛)

Examples:
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SINGULARITIES AND 

WAVEFRONTS
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Given 𝜒 ∈ 𝒟′ 𝑋 , the closed subset of X  
defined by

𝑊𝐹 𝜒 ≔ 𝑥, 𝜉 ∈ 𝑋 × ℝ𝑛 ∶ 𝜉 ∈ Σ𝑥 𝜒
Is called the wave front set of 𝜒, where 
Σ𝑥 𝜒  is the collection of “singular 
directions” of 𝜒 at 𝑥. 

The projection 𝜋𝑋: 𝑊𝐹 𝜒 → 𝑋 has as 
image the singular support of 𝜒.

Definition:

Boundaries and Lines



SINGULARITY DETECTION IN 

RADON TRANSFORM
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The Radon transform R𝜒 of a 
distribution 𝜒 ∈ 𝒟′ 𝑋  detects the 
singularities of 𝜒:

𝑊𝐹 𝑅𝜒 = { 𝐿, 𝜂 : ∃ 𝑥, 𝜉 ∈ 𝑊𝐹 𝜒 , 𝑥 ∈

𝐿,  𝜉 ⊥ 𝐿, 𝜂 = ± 𝜉 𝑑𝐿}

Remark:

𝑃



INFINITESIMAL THICKENING
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Methods of microlocal analysis can still be used to 
determine equations on limited data

𝜕𝜃𝑅𝜒Ω 1, 𝜃 = 𝑥𝜈𝑦 − 𝑦𝜈𝑥 𝛿𝜕Ω𝛿𝐿, 1 =
det(𝑃+ 𝜈 𝑃+ )

| det 𝑇 𝑃+  𝑇𝜃 |
+

det(𝑃− 𝜈 𝑃− )

| det 𝑇 𝑃−  𝑇𝜃 |



INFINITESIMAL THICKENING
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On the other hand, using the thickened data can provide 
sufficient conditions for uniqueness

Fig. Local parameterizations 
from thickened data.



SUMMARY 
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• What are inverse problems

• The appearances of inverse problems in 
imaging and the Radon Transform

• Example of a limited data inverse 
problem

• Local techniques for studying inverse 
problems



THANK YOU 
FOR YOUR TIME!

Any Questions?
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